a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 资讯 > 正文

指纹识别技术实现原理分析

与传统的身份鉴别方法相比,生物特征识别技术更加安全、保密。这是因为生物特征在某种程度上都具有比较明显的普遍性、唯一性、稳定...
资讯频道文章B
        与传统的身份鉴别方法相比,生物特征识别技术更加安全、保密。这是因为生物特征在某种程度上都具有比较明显的普遍性、唯一性、稳定性及可采集性,一方面便于各类识别系统收集特征进行分析,另一方面能够准确地标识出身份信息。常见的生物特征包括指纹、手形、人脸、虹膜、视网膜、声音、签名等。
评价这些生物特征识别技术的优劣主要考虑以下三个方面。
一是性能,包括识别率、识别速度等。
二是可接受性,即在平时工作生活里,该生物特征识别技术被接纳的程度。   
三是可欺骗性,即识别技术被欺骗的难易程度。表1给出了一些常用的生物特征识别技术的对比。
  指纹识别是使用频率最高的生物特征识别技术之一。早在唐宋期间,指纹已经用于文书契约和司法审判中。现代的指纹识别技术经历了多年的积累,已经非常成熟,广泛应用在司法、公安和门禁领域。
所谓指纹,是指人体指尖表面的纹路。在指纹中,凸起的纹线为脊线,脊线与脊线之间的部分为谷线。根据脊线和谷线的结构,可以得到一些细节点。指纹识别主要就是利用这些细节点特征实现的。
指纹识别技术应用非常广泛,比如指纹锁、指纹考勤、指纹门禁、指纹支付和手机指纹开锁等。
  指纹识别主要包括指纹增强、特征提取和指纹匹配三个过程。
  1、指纹增强:在指纹采集过程中,由于各种原因,采集到的指纹图像不可避免的引入了一些噪声,如果直接用于指纹识别,往往难以达到较好的效果。我们可以通过一定的图像增强技术,改善指纹图像质量。这里会用到的技术有图像分割、直方图均衡化、滤波增强、二值化、细化等。
  2、特征提取:前面提到,细节点特征是最常用的指纹特征。细节点特征的提取,就是在指纹图像中找到脊线终点和脊线分叉两个特征。经过了指纹增强的步骤,如果指纹图像能较好地分割,细节点很容易提取。但实际上有一些噪声很难处理,这样在增强后就会产生一些虚假特征。一般地,启发式算法可以删除虚假特征。特征提取后,我们得到了多组脊终点或分叉类型、位置坐标及方向信息等。
  3、指纹匹配:指纹匹配算法有很多种,包括点模式匹配、脊模式匹配、基于图像的匹配和基于图形的匹配等。细节点匹配可以看做是点模式匹配的问题。点模式匹配就是将提取的细节点集与数据库中的细节点集进行匹配,如果通过一些旋转、尺度变换和平移变换,点集间是匹配的,那个两幅指纹图像就是匹配的。
  指纹识别与安防领域的结合主要体现在指纹锁和考勤等应用。指纹门锁是最近兴起的指纹识别产品之一。常见的指纹锁厂商有普罗巴克,爱迪尔等。由于指纹识别算法比较成熟,业务应用和用户体验对于这类产品显得尤为重要。
参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

a&s是国际知名展览公司——德国法兰克福展览集团旗下专业的自动化&安全生态服务平台,为智慧安防、智慧生活、智能交通、智能建筑、IT通讯&网络等从业者提供市场分析、技术资讯、方案评估、行业预测等,为读者搭建专业的行业交流平台。

免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
© 2024 - 2030 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备12072668号 粤公网安备 44030402000264号
用户
反馈